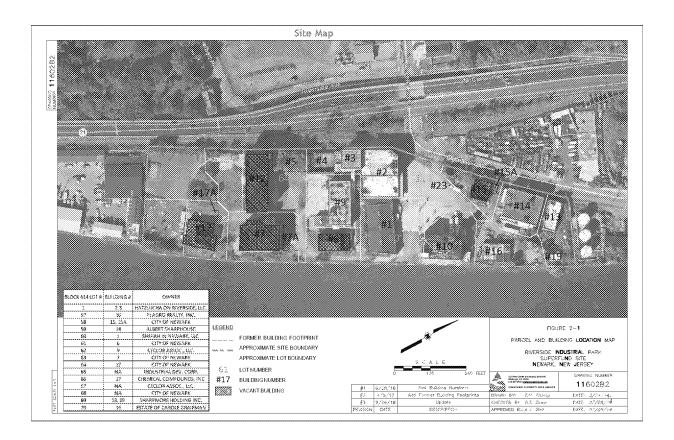


Riverside Industrial Park Superfund Site

Feasibility Study/Proposed Plan

July 9, 2020

Major Milestones


- ~1903 PPG constructed their plant
- 1971 PPG ceased all operations
- 1971 to current Site was subdivided into 15 Lots and used for a wide variety of industrial purposes; some lots are currently inactive/abandoned
- 2009 2014 EPA found discharge to pipe on site and conducted removal actions
- 2013 Riverside was added to Superfund List
- 2017 EPA approved the Remedial Investigation / Feasibility Study (RI/FS)
 Work Plan and field studies began
- April 2020 Remedial Investigation (RI), Baseline Human Health Risk Assessment (BHHRA) and Screening Level Ecological Risk Assessment (SLERA) were completed
- June 2020 Feasibility Study (FS) was conditionally approved

REMEDIAL INVESTIGATION

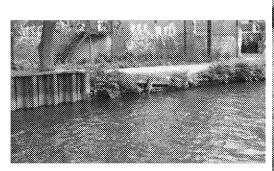
Summarized into five categories:

- Waste
- Sewer Water
- Soil Gas
- Soil/Fill
- Groundwater

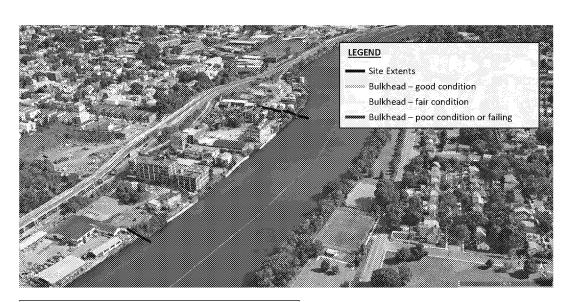
8/9/2021

Waste, Sewer Water, and Soil Gas

- Waste
 - Drums/containers in vacant buildings (Lots 63, 64, and 66)
 - Basement of a former pump building (Lot 58) contains petroleum waste
 - Six underground storage tanks (USTs) and contents within the USTs
 - Volatile organic compounds (VOCs), chlorinated VOCs, and petroleum waste was found in the USTs
 - Soils surrounding the USTs were found to contain petroleum waste, likely from the USTs
- Sewer Water
 - An inactive sewer manhole has elevated chlorinated organic concentrations
- Soil Gas
 - The data indicated that the vapor intrusion pathway may be a potential exposure risk
 - Indoor sampling indicated no unacceptable levels for currently occupied buildings


Soil/Fill

- Historic fill
 - Predominantly the top layer of the site
 - Used to raise the elevation and reclaim land from the river
 - Consists of soil with variable amounts of debris
 - Up to 15 feet of fill
 - The lower portions of the fill are saturated by groundwater
 - Fill material appears to have been impacted by historical and/or current operations
- Soil was found to be impacted by volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and metals
- Bulkhead deterioration and soil erosion
 - Shares boundary with the river. Concern for contaminated soils moving to and from the site during future high water events



Impacts between the site and the River

- · Portions of the bulkhead have deteriorated
- There may be impacts to and from the river
- The portion of the river adjacent to the site is part of Diamond Alkali OU2, the Lower 8.3 miles. This part of the river has a cleanup plan that is under design.

Source: GSH/Tetra Tech "Preliminary Bulkhead and Shoreline Assessment Report" Revision 2, May 2019

Groundwater

- Two groundwater units were investigated:
 - A shallow and a deep aquifer
 - Both aquifers flow primarily towards the Passaic River
 - Tidal influences were observed in both units
- Groundwater quality varied based on location
 - Impacted by historic fill, underground storage tanks (USTs), spill/releases from past or current operators
 - Southern portion is contaminated by VOCs
 - Central portion contaminated by fuel-related constituents
 - Northern portion is contaminated with fuel-related constituents and VOCs

Acetone and Sewer Pipe Discharge

- Two issues were determine to be related to currently operating facilities
 - Acetone found in the groundwater below Lot 57
 - A sewer pipe draining contaminated water at river wall of Lot 57
- EPA is coordinating with NJDEP to resolve these issues
- These issues are not a component of the superfund remedy however EPA will need to concur with any NJDEP action

Baseline Human Health Risk Assessment

- Evaluated potential human health risk/hazards associated with exposure to chemical of potential concern (COPCs) in soil, groundwater, and indoor air.
- Potentially exposed populations (i.e., receptors) include:
 - Outdoor workers, indoor workers, utility workers, construction workers, trespassers (adult and adolescent), visitors (adult and child), off-site workers and residents (via wind transport), and potential future on-site residents
- Unacceptable risk from exposure to lead in soil
- Potential unacceptable future risk from lead, copper, and VOCs in soil and indoor air
- Potential unacceptable future risk in both shallow and deep groundwater

Screening Level Ecological Risk Assessment

- This is very low-quality ecological habitat
 - 100 years of industrial use and will remain industrial
 - 70% paved over
 - No sensitive species
- Unacceptable risk in surface soil
 - All remedial alternatives will address this contamination
 - No further screening is required

FEASIBILITY STUDY

Summarized into five categories:

- Waste
- Sewer Water
- Soil Gas
- Soil/Fill
- Groundwater

8/9/2021

Remedial Action Objectives (RAO)

Waste

- Secure or remove waste
- Prevent uncontrolled movement
- Minimize or eliminate human and ecological exposure to the waste

Sewer Water

- Prevent exposure to chemicals of concern (COCs)
- Minimize concentrations of COCs
- Prevent or minimize discharge of COCs

Soil Gas

 Minimize sources of COCs in soil gas that may migrate to indoor air

Soil/Fill

- Remove COCs or minimize COC concentrations
- Minimize or eliminate human and ecological exposure
- Prevent or minimize offsite transport of soil containing COCs
- Prevent or minimize leaching of COCs to groundwater and surface water

Groundwater

- Minimize contaminant concentrations and restore groundwater quality
- Prevent exposure to COCs in groundwater
- Prevent or minimize migration and discharge of groundwater containing COCs 15

Preliminary Remediation Goals (PRGs)

- Preliminary remediation goals (PRGs) are chemical-specific, quantitative goals for each medium
- No PRGs have been developed for sewer water or waste
- PRGs for soil/fill and soil gas
 - Either risk-based concentrations (RBCs) or New Jersey Non-Residential Direct Contact Soil Remediation Standards (NRDCSRS)
 - NJDEP NRDCSRS were identified based on the reasonably anticipated use of the Site as commercial/industrial
- PRGs for groundwater
 - NJDEP promulgated groundwater quality standards (GWQSs)

Preliminary Remediation Goals (PRGs)

Soil COC	PRG (milligrams/kilogram (mg/kg))	Groundwater COCs	PRG (micrograms/liter (ug/L))
ead	800	Lead Acetone	5
opper	526	Benzene	6,000 1
aphthalene (Vapor Intrusion)*	0.62	Ethylbenzene Methylene chloride	700 3
CE	0.02	Tetrachloroethylene	1
tal Xylenes	6.5	Toluene Trichloroethane, 1,1,2-	600 3
senic	19	Trichloroethylene	1
tal PCBs	1	Vinyl chloride	1
nzene	5	Xylene, m,p Xylene, o-	1,000 1,000
enzo(a)anthracene	17	Cresol, p-	50
enzo(a)pyrene	2	Benzo(a)anthracene	0.1
enzo(b)fluoranthene	17	Benzo[a]pyrene Benzo[b]fluoranthene	0.1 0.2
benz(a,h)anthracene	2	Bis(2-ethylhexyl)phthalate	3
aphthalene (soil)*	17	Dioxane, 1,4- Indeno(1,2,3-cd)pyrene	0.4 0.2
nyl chloride	2	Methylnapthalene, 2-	30

Nine Evaluation Criteria for Remedial Alternatives

Threshold Criteria:

- 1. Overall protection of human health and the environment
- 2. Compliance with applicable or relevant and appropriate requirements (ARARs)

Balancing Criteria:

- 3. Long-term effectiveness and permanence
- 4. Reduction of toxicity, mobility, or volume of contaminants through treatment
- 5. Short-term effectiveness
- 6. Implementability
- 7. Cost

Modifying Criteria:

- 8. State acceptance
- 9. Community acceptance

Remedial Alternatives

Waste

- Waste Alternative 1 No Action
 - Required by EPA as a baseline for comparison
 - Not Protective of human health and the environment
- Waste Alternative 2 Removal and Off-Site Disposal
 - Includes:
 - Various containers across the Site
 - NAPL in basement of building 15
 - Underground storage tanks
 - · Contents in the tanks
 - · Contaminated soil around the tanks
 - Protective of human health and the environment
 - Would meet all Waste RAOs

Remedial Alternatives Sewer Water

- Sewer Water Alternative 1 No Action
 - Required by EPA as a baseline for comparison
 - Not Protective of human health and the environment
- Sewer Water Alternative 2 Removal and Off-Site Disposal
 - Includes sewer water and solids from an inactive sewer line
 - Sewer line will be clean and then closed in-place
 - Protective of human health and the environment
 - Would meet all Sewer Water RAOs

Remedial Alternatives Soil Gas

- Soil Gas Alternative 1 No Action
 - Required by EPA as a baseline for comparison
 - Not Protective of human health and the environment
- Soil Gas Alternative 2 Institutional Controls (ICs) and Engineering Controls (ECs)
 - ICs would provide notice of restrictions upon the use of the property
 - Air monitoring would be required for all existing occupied buildings
 - If air quality was unacceptable then ECs would be required
 - Future buildings must include ECs
 - Protective of human health and the environment
 - Would meet Soil Gas RAO

Remedial Alternatives Soil Gas

- Soil Gas Alternative 3 ICs, ECs, and In-Situ Remediation
 - Same components as Alternative 2 except this alternative includes insitu remediation of certain areas
 - Soils above PRGs and with 100 feet of an existing building would be remediated using chemical oxidation injection
 - Soils above PRGs and not within 100 feet would be addressed by ICs
 - Protective of human health and the environment
 - Would meet Soil Gas RAO

- Soil/Fill Alternative 1 No Action
 - Required by EPA as a baseline for comparison
 - Not Protective of human health and the environment
- Soil/Fill Alternative 2 ICs and NAPL Removal
 - Deed notices would be recorded on all 15 lots
 - Fencing would be added or enhanced for the Site
 - Soil/fill with NAPL will be excavated and disposed of off-site
 - Protective of human health and the environment
 - Would not meet most Soil/Fill RAOs only minimizes human exposure

- Soil/Fill Alternative 3 ICs, ECs (containment), and NAPL Removal
 - Same components as in Alternative 2 (deed notices, fencing, and NAPL removal) but also includes:
 - Bulkhead repair/replacement and site-wide cap
 - Protective of human health and the environment
 - Would meet all Soil/Fill RAOs

- Soil/Fill Alternative 4 ICs, ECs (containment), NAPL Removal, and Focused Removal with Off-Site Disposal of Lead
 - Same components as in Alternative 2 and 3 (deed notices, fencing, NAPL removal, bulkhead and cap) but also includes:
 - Focused soil/fill removal and off-site disposal in Lots 63 and 64
 - · Cluster of high level lead contamination
 - Remaining area will be capped and bulkhead will be repaired/replaced
 - Protective of human health and the environment
 - Would meet all Soil/Fill RAOs

- Soil/Fill Alternative 5 ICs, ECs (containment), NAPL Removal, and In-Situ Remediation
 - Same components as in Alternative 2 and 3 (deed notices, fencing, NAPL removal, bulkhead and cap) but also includes:
 - In-Situ remediation a stabilization/solidification technology would be likely be most applicable for this Site
 - Site-wide cap is needed to protect the in-situ remedy
 - Protective of human health and the environment
 - Would meet all Soil/Fill RAOs

Remedial Alternatives

Groundwater

- Groundwater Alternative 1 No Action
 - Required by EPA as a baseline for comparison
 - Not Protective of human health and the environment
- Groundwater Alternative 2 ICs, Containment at River Edge, and Pump and Treat
 - Site-wide establishment of classified exception area (CEAs) and well restriction area (WRA) to prevent potable use of groundwater
 - A vertical sheet pile barrier wall would be constructed along the river's edge
 - A 200 gallon per minute extraction and treatment system would be constructed
 - Protective of human health and the environment
 - Would meet Groundwater RAOs

Remedial Alternatives Groundwater

- Groundwater Alternative 3 ICs and In-Situ Remediation
 - Includes ICs as described in Alternative 2
 - In-situ remediation for organics and inorganics (chemical oxidation and/or reduction)
 - Protective of human health and the environment
 - Would meet groundwater RAOs

Remedial Alternatives

Groundwater

- Groundwater Alternative 4 ICs, Pump and Treat, and Targeted Periodic In-Situ Remediation
 - Includes ICs and the extraction/treatment system as described in Alternative 2
 - Also includes a targeted, periodic in-situ treatment similar to Groundwater Alternative 3
 - Effectiveness would be reevaluated every year and treatment would be adjusted accordingly
 - Wells would be located along river edge for hydraulic containment
 - Protective of human health and the environment
 - Would meet groundwater RAOs

Remedial Alternatives Costs

Waste

Alternatives

Net Present
Worth

Waste Alternative 1 \$0

Waste Alternative 2 \$1,580,700

• Sewer Waste

Alternatives	Net Present Worth
Sewer Water Alternative 1	\$0
Sewer Water Alternative 2	\$24,900

• Soil Gas

Net Present Worth
\$0
\$449,800
\$4,591,968

Remedial Alternatives Costs

• Soil/Fill

Alternatives	Net Present Worth
Soil/Fill Alternative 1	\$0
Soil/Fill Alternative 2	\$356,100
Soil/Fill Alternative 3	\$10,600,700
Soil/Fill Alternative 4	\$12,782,900
Soil/Fill Alternative 5	\$14,118,800

Groundwater

Alternatives	Net Present Worth
Groundwater Alternative 1	\$0
Groundwater Alternative 2	\$34,258,600
Groundwater Alternative 3	\$20,844,800
Groundwater Alternative 4	\$24,234,400

Proposed Plan

Coming Soon

Proposed Plan Public Meeting This will be a virtual meeting in early August

Timeline to ROD

- April 2020 Baseline Human Health Risk Assessment, Screening Level Ecological Risk Assessment, and the Remedial Investigation Report were approved
- June 2020 Feasibility Study conditionally approved
- July 2020 EPA releases Proposed Plan for public comment
- September 2020 Record of Decision (ROD) expected to be signed

Questions?

Josh Smeraldi, RPM Smeraldi.Josh@epa.gov 212-637-4302